Geração de dados sintéticos para classificação de disléxicos por meio de aprendizado de máquina

Antonio Carlos da Silva Junior, Emanuela Cristina Ramos Gonçalves, Paulo Schor, Martina Navarro, Felipe Mancini

Resumo


Objetivo: Este estudo pretende aplicar a técnica de geração de dados sintéticos com auxílio de técnicas de limpeza de dados para a classificação de disléxicos e não - disléxicos. Método: Os outliers foram selecionados por especialista. Foi feito uma geração sintética de dados. para cada um de cinco algoritmos foram selecionados características com busca exaustiva. Cada algoritmo foi executado com as características selecionadas e então suas curvas de calibração foram comparadas. Resultados: A regressão logística se destacou como o melhor algoritmo, apresentando o resultado de 99% de acurácia e área sob a curva ROC de 0,999, além de ter obtido a melhor curva de calibração Conclusão: O uso da geração sintética de dados e seleção de características foram capazes de fazer todos os algoritmos avaliados obterem ótimos resultados na classificação de disléxicos e não disléxicos. A regressão logística foi selecionado como melhor algoritmo para classificação de disléxicos.


Palavras-chave


Dislexia; Aprendizado de Máquina; Leitura

Texto completo: PDF


Journal of Health Informatics - ISSN 2175-4411
Rua Tenente Gomes Ribeiro, 57 - sala 33 CEP 04038-040 São Paulo - SP - Brasil
Tel./Fax: + 55 11 3791 3343 - E-mail: jhi@sbis.org.br