Redes Neurais Densas para Classificação de Estresse

Alex Fernandes Figueiredo, Hygo Sousa de Oliveira, Eduardo James Pereira Souto

Resumo


Objetivo: Propor uma arquitetura de rede neural otimizada para classificação de estresse com base em sinais vitais coletados por meio de dispositivos vestíveis. Métodos: Uso de rede neural densa, multicamadas, otimizada por meio da técnica Grid-Search para seleção de hiperparâmetros. Para treinamento e avaliação da rede foi utilizada a base de dados pública WESAD. Resultados: O modelo proposto atingiu acurácia média de 98.55% com desvio padrão de 0.28% em validação cruzada k-fold, batendo o modelo de referência que apresentou acurácia média de 86.14% e desvio padrão de 4.61% nas mesmas condições. Conclusão: Por meio de técnicas de otimização de hiperparâmetros para redes neurais, pode-se obter modelos com acurácia elevada na tarefa de classificação de estresse a partir de sinais fisiológicos coletados por dispositivos vestíveis.

Palavras-chave


Estresse Psicológico; Redes Neurais; Otimização Grid-Search

Texto completo: PDF


Journal of Health Informatics - ISSN 2175-4411
Rua Tenente Gomes Ribeiro, 57 - sala 33 CEP 04038-040 São Paulo - SP - Brasil
Tel./Fax: + 55 11 3791 3343 - E-mail: jhi@sbis.org.br