Aprendizagem de Máquina para Classificação de Doenças Respiratórias: Uma Revisão Sistemática

Letícia Balbi Silva, Fernando Neves Nogueira, Jackson Matheus dos Santos, Kevin Gustavo Montero Quispe, Rafael Giusti, Juan Gabriel Colonna

Resumo


Objetivo: O objetivo deste trabalho é apresentar uma análise do estado da arte referente ao problema de classificação de sons respiratórios para auxiliar no diagnóstico e monitoramento da saúde respiratória, destacando os métodos de aprendizagem de máquina. Métodos: Uma revisão da literatura foi conduzida a partir das seguintes palavras-chaves: Machine learning, Classification, Diagnosis, Respiratory sounds, Respiratory disease, Lung sounds e Pulmonary disease. Os banco de dados de pesquisas utilizados foram IEEE Xplore, PubMed e Scopus.  Resultados: Ao total 1135 artigos foram coletados, mas apenas 67 atenderam às exigências na primeira etapa de filtro e 14 trabalhos atenderam aos critérios de elegibilidade. Uma taxonomia foi proposta para organizar os trabalhos de acordo com a abordagem de aprendizagem de máquina aplicada. Conclusão: Os resultados obtidos pelo estudo apresentam uma perspectiva geral sobre a problemática, além das contribuições para resolução dos desafios presentes na auscultação tradicional, suas limitações e investigações futuras.

Palavras-chave


Revisão Sistemática; Diagnóstico Precoce; Sons Respiratórios

Texto completo: PDF


Journal of Health Informatics - ISSN 2175-4411
Rua Tenente Gomes Ribeiro, 57 - sala 33 CEP 04038-040 São Paulo - SP - Brasil
Tel./Fax: + 55 11 3791 3343 - E-mail: jhi@sbis.org.br