Classificando Graus de Pterígio Utilizando Aprendizado de Máquina

Erik Jhones Freitas do Nascimento, David Victor Cavalcante, Ana Carolina Silva Abreu, Diego Parente Paiva Mesquita, Amauri Holanda de Souza Júnior

Resumo


Objetivos: Pterígio é uma condição ocular resultante do crescimento de tecido subconjuntival ao longo da córnea, podendo comprometer a visão quando em grau avançado. Essa condição é particularmente comum entre trabalhadores frequentemente expostos à luz, muitos dos quais vivem em regiões com acesso precário à rede de saúde, o que naturalmente dificulta o diagnóstico. Este trabalho apresenta uma abordagem automatizada para a classificação de graus de avanço de Pterígio usando redes neurais a partir de imagens. Métodos: Para validar a abordagem proposta, é utilizado e disponibilizado um novo banco de dados de imagens em diversos graus de avanço da patologia. Resultados: Dentre os modelos avaliados, destacam-se as redes neurais convolucionais, obtendo acurácia média de 95%. Conclusão: Uma nova base de dados foi disponibilizada. Adicionalmente, planeja-se disponibilizar o método na forma de um aplicativo móvel.

Palavras-chave


Pterígio; Aprendizado de Máquina; Redes Neurais de Computação

Texto completo: PDF


Journal of Health Informatics - ISSN 2175-4411
Rua Tenente Gomes Ribeiro, 57 - sala 33 CEP 04038-040 São Paulo - SP - Brasil
Tel./Fax: + 55 11 3791 3343 - E-mail: jhi@sbis.org.br