Reconhecimento de Gestos de Mão em Sequência a partir de Sensores Inerciais

Carlos Henrique Gomes Correia, Karin Satie Komati, Francisco de Assis Boldt

Resumo


Objetivo: O propósito desse trabalho é o de reconhecer os gestos da mão de uma base de dados de sensores inerciais. Métodos: A proposta é dividida em duas partes, na primeira, o processo de segmentação utiliza o algoritmo não supervisionado KMeans para identificar os segmentos correspondentes aos gestos. A segunda parte usa a técnica Floresta Aleatória (FA), com e sem extração de características, para classificação dos gestos dos segmentos encontrados na fase anterior. Resultados: O melhor resultado foi obtido com extração de características, apresentando 83% de acurácia. Conclusão: Os resultados mostram que é possível utilizar técnicas de aprendizado de máquina em conjunto para identificar, segmentar e classificar gestos de mãos em uma base de dados adquirida por sensores inerciais.

Palavras-chave


Auxiliares de Comunicação para Pessoas com Deficiência; Processamento de Sinais Assistido por Computador; Aprendizado de Máquina

Texto completo: PDF


Journal of Health Informatics - ISSN 2175-4411
Rua Tenente Gomes Ribeiro, 57 - sala 33 CEP 04038-040 São Paulo - SP - Brasil
Tel./Fax: + 55 11 3791 3343 - E-mail: jhi@sbis.org.br