COVID 19: O que sentem os brasileiros de acordo com o Twitter?

Giovanni Pazini Meneghel Paiva, Elisa Terumi Rubel Schneider, Josilaine Oliveira Cezar, Lucas Ferro Antunes de Oliveira, João Vitor Andrioli, Claudia Maria Cabral Moro Barra, Emerson Cabrera Paraiso, Lucas Emanuel Silva e Oliveira, Yohan Bonescki Gumiel

Resumo


Objetivo: A pandemia causada pelo novo coronavírus (SARS-CoV-2) caracteriza-se como o maior desafio do século 21. Neste contexto, procurou-se levantar um panorama geral de dados de usuários do Twitter, no Brasil, relacionados à COVID-19. Métodos: Utilizando de técnicas de Processamento de Linguagem Natural, foi aplicado um modelo Word2Vec CBOW em um conjunto pré-processado de dados públicos em português. Este foi então analisado através de wordclouds, tabelas e gráficos t-SNE. Resultados: O modelo captou comportamentos e tendências relacionados a COVID-19, como similaridades entre palavras, os unigramas e bigramas mais frequentes e hipóteses baseadas em dados estatísticos recolhidos. Conclusão: Este estudo apresenta uma análise inicial de mensagens do Twitter, em português, relacionadas à COVID-19. Os resultados foram promissores e evidenciaram o potencial da aplicação do aprendizado de máquina em assuntos importantes, como uma crise de saúde mundial.

Palavras-chave


Processamento de Linguagem Natural; COVID-19; Mensagens do Twitter

Texto completo: PDF


Journal of Health Informatics - ISSN 2175-4411
Rua Tenente Gomes Ribeiro, 57 - sala 33 CEP 04038-040 São Paulo - SP - Brasil
Tel./Fax: + 55 11 3791 3343 - E-mail: jhi@sbis.org.br