Detecção de Covid-19 em Imagens de Raio-x Utilizando Redes Convolucionais

Pedro Paulo de Souza Leão, Natalia de Sousa Freire, Rafael Albuquerque Pinto, Kely Maciel Braule Pinto, Rafael Giusti, Eulanda Miranda dos Santos

Resumo


Objetivo: Este trabalho investiga diferentes abordagens de utilização de redes de convolução (CNNs) para diferenciar Pneumonia causada por Covid-19 de Pneumonia causada por outras doenças, e casos sem Pneumonia. Os dados utilizados são imagens de raio-x. Método: Duas abordagens de treinamento de CNNs são empregadas: CNN sem transferência de aprendizado e CNN treinada com transferência de aprendizado. Além disso, o problema de classificação é tratado em dois cenários: 1) duas classes e 2) três classes. Resultados: A abordagem sem transferência de aprendizado mostrou-se melhor no cenário com duas classes (acurácia 85,37% contra 82.11%), enquanto a segunda abordagem foi ligeiramente superior no cenário 2 (acurácia 87,91% vs 86.26%). Conclusão: Os resultados são interessantes e mostram que o desempenho dos métodos investigados pode variar ao modificarmos o cenário de avaliação, porém, ajustes dos parâmetros são necessários para que as conclusões sejam mais precisas.

Palavras-chave


Covid-19; Aprendizado de Máquina

Texto completo: PDF


Journal of Health Informatics - ISSN 2175-4411
Rua Tenente Gomes Ribeiro, 57 - sala 33 CEP 04038-040 São Paulo - SP - Brasil
Tel./Fax: + 55 11 3791 3343 - E-mail: jhi@sbis.org.br