Avanços Recentes em Aprendizagem de Máquina Usando Fonocardiogramas na Detecção de Cardiopatias

João Vicente Silva Goes, Vinícius de Medeiros Hernandes, Hygo Sousa de Oliveira, Eulanda Miranda dos Santos, Rafael Giusti

Resumo


Objetivo: Neste trabalho, apresentamos uma visão geral dos avanços recentes da literatura na detecção de cardiopatias utilizando algoritmos de aprendizado de máquina aplicados a sinais cardíacos obtidos por meio de fonocardiograma. Métodos: Foi aplicada uma frase de busca em bases de dados digitais, de forma a limitar os artigos entre 2018 e 2020. Os resultados foram filtrados por pertinência e relevância e os artigos mais importantes foram selecionados para discussão. Resultados: Selecionamos 12 artigos para serem explorados, observando características como modelo de aprendizagem, taxa de acurácia, base de dados utilizada e outros critérios pertinentes à pesquisa científica. Conclusão: Foi possível identificar que o modelo mais utilizado pelos trabalhos são os de redes neurais de convolução, ainda que vários trabalhos utilizando técnicas tradicionais também venham demonstrando sua importância devido ao bom desempenho na tarefa de classificação, empregando principalmente extratores de características baseados em amplitude no domínio tempo-frequência.

Palavras-chave


Aprendizagem de máquina; Predição de cardiopatias; Fonocardiogramas

Texto completo: PDF


Journal of Health Informatics - ISSN 2175-4411
Rua Tenente Gomes Ribeiro, 57 - sala 33 CEP 04038-040 São Paulo - SP - Brasil
Tel./Fax: + 55 11 3791 3343 - E-mail: jhi@sbis.org.br